SCI, SSCI ve AHCI İndekslerine Giren Dergilerde Yayınlanan Makaleler
A p- Adic approach to TSPO gene.
A modular approach to the generalized Ramanujan-Nagell equation
INDAGATIONES MATHEMATICAE-NEW SERIES
, cilt.33, sa.5, ss.992-1000, 2022 (SCI-Expanded)



On elliptic curves induced by rational Diophantine quadruples
Proceedings of the Japan Academy Series A: Mathematical Sciences
, cilt.98, sa.1, 2022 (SCI-Expanded)




Rational points in geometric progression on the unit circle
A note on the ternary Diophantine equation x(2) - y(2m) = z(n)
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA
, cilt.29, sa.2, ss.93-105, 2021 (SCI-Expanded)


A note on Terai's conjecture concerning primitive Pythagorean triples
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
, cilt.50, sa.4, ss.911-917, 2021 (SCI-Expanded)



The shuffle variant of a Diophantine equation of Miyazaki and Togbe
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE
, cilt.64, sa.3, ss.243-254, 2021 (SCI-Expanded)


On a class of Lebesgue-Ljunggren-Nagell type equations
RESOLUTION OF THE EQUATION (3(x1)-1)(3(x2)-1) = (5(y1)-1)(5(y2)-1)
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
, cilt.50, sa.4, ss.1425-1433, 2020 (SCI-Expanded)



A note on the ternary purely exponential diophantine equation A(x) + B-y = C-z with A plus B = C-2
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
, cilt.57, sa.2, ss.200-205, 2020 (SCI-Expanded)


An application of Baker's method to the Jesmanowicz' conjecture on primitive Pythagorean triples
ON THE EXPONENTIAL DIOPHANTINE EQUATION (n-1)(x) + (n+2)(y) = n(z)
The Diophantine equation (x+1)(k) + (x+2)(k) + ... plus (lx)(k) = y(n) revisted
PUBLICATIONES MATHEMATICAE-DEBRECEN
, cilt.96, sa.1-2, ss.111-120, 2020 (SCI-Expanded)



RATIONAL SEQUENCES ON DIFFERENT MODELS OF ELLIPTIC CURVES
On the Diophantine equation (&ITx&IT+1)&ITk&IT + (&ITx&IT+2)&ITk&IT + ... + (2&ITx&IT)&ITk&IT = &ITy(n)&IT
On the Diophantine equation ((c+1)m(2)+1)(x) + (cm(2)-1)(y) = (am)(z)
ELLIPTIC CURVES CONTAINING SEQUENCES OF CONSECUTIVE CUBES
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
, cilt.48, sa.7, ss.2163-2174, 2018 (SCI-Expanded)


On the Diophantine equation (x+1)(k) (x+2)(k) + . . . plus (lx)(k) = y(n)
On the exponential Diophantine equation x(2)+2(a) p(b) = y(n)
Note on "On the Diophantine equation nx(2)+2(2m) = y(n)" [Y. Wang, T. Wang, J. Number Theory 131 (8) (2011) 1486-1491]
On the diophantine equation x (2)+2 (a) center dot 3 (b) center dot 11 (c) = y (n)
A NOTE ON TWO DIOPHANTINE EQUATIONS x(2) +/- 2(a) p(b) = y(4)
On the Diophantine equation 2(m) + nx(2) = y(n)
ON THE DIOPHANTINE EQUATION x(2)+2(a) . 19(b) = y(n)
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS
, cilt.43, sa.3, ss.251-261, 2012 (SCI-Expanded)


ON THE DIOPHANTINE EQUATION x(2)+7(alpha) . 11(beta) = y(n)
ON THE DIOPHANTINE EQUATION x(2) 5(a) . 11(b) = y(n)
FUNCTIONES ET APPROXIMATIO: COMMENTARII MATHEMATICI, VOL 43, PT 2
, cilt.43, ss.209-225, 2010 (SCI-Expanded)


THE GROUP STRUCTURE OF BACHET ELLIPTIC CURVES OVER FINITE FIELDS F-p
Rational points on elliptic curves y(2)=x(3)+a(3) in F-P where p equivalent to 1 (mod 6) is prime
Diğer Dergilerde Yayınlanan Makaleler
ON TRIANGLES WITH COORDINATES OF VERTICES FROM THE TERMS OF THE SEQUENCES {U-kn} AND {V-kn}
RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI
, cilt.24, sa.542, ss.15-27, 2020 (ESCI)


A brief survey on the generalized Lebesgue-Ramanujan-Nagell Equation
Surveys in Mathematics and its Applications
, cilt.15, ss.473-523, 2020 (Scopus)
A note on the diophantine equations x 2 ± 5 α . pn = y n
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
, cilt.67, sa.1, ss.317-322, 2018 (Hakemli Dergi)
ON THE DIOPHANTINE EQUATION Sigma(k)(j=1) jF(j)(p) = F-n(q)
Complete solution of the Diophantine equation x25a.11b=yn
Bulletin of the Hellenic Mathematical Society
, cilt.60, ss.125-151, 2016 (Hakemli Dergi)
A p-adic look at the Diophantine equation x2+112k = yn
Numerical Analysis and Applied Mathematics, AIP Conference Proceedings
, cilt.1168, ss.275-277, 2009 (Hakemli Dergi)
The Diophantine Equation x^2 + 11^m = y^n,
Adv. Studies in Contemporary Maths.,
, cilt.19, sa.2, ss.183-188, 2009 (Hakemli Dergi)
Counting the Number of Pythagorean Triples in Finite Fields
Advances in Theoretical and Applied Mathematics
, cilt.2, ss.77-82, 2007 (Hakemli Dergi)
Rational Points on Elliptic Curves y2 = x3 + a3 in Fp, where p 5 (mod 6) is Prime
Int. J. of Mathematics Sciences
, cilt.1, sa.4, ss.247-250, 2007 (Hakemli Dergi)
Rational Points on Frey elliptic curves on finite fields
Advances in Theoretical and Applied Mathematics
, cilt.2, ss.129-136, 2007 (Hakemli Dergi)
Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p 1 (mod 6) is Prime
Int. J. of Mathematics Sciences
, cilt.1, sa.4, ss.239-241, 2007 (Hakemli Dergi)
The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields
Int. J. of Mathematics Sciences
, cilt.1, sa.4, ss.255-257, 2007 (Hakemli Dergi)
On the Additive Structure of the Set of Quadratic Residues Modulo p
Adv. Studies in Contemporary Maths
, cilt.14, sa.2, ss.251-257, 2007 (Hakemli Dergi)
CORRIGENDUM ON "THE NUMBER OF POINTS ON ELLIPTIC CURVES E : y(2) = x(3)
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY
, cilt.22, sa.2, ss.207-208, 2007 (ESCI)

Corrigendum on The Number of Points on Elliptic Curves E y 2 x 3 cx over mathbb F p mod 8
Communications of the Korean Mathematical Society
, cilt.22, sa.2, ss.207-208, 2007 (Hakemli Dergi)
Hakemli Bilimsel Toplantılarda Yayımlanmış Bildiriler
The shuffle variant of a Diophantine equation of Miyazaki and Togbe
The third Romanian-Turkish Mathematics Colloquium 2019, Constanta, Romanya, 18 - 22 Eylül 2019
On the exponential Diophantine equation (5pm2-1)x(p(p-5)m21)y=(pm)z
Conference on Diophantine m-tuples and Related Problems-II, Michigan, Amerika Birleşik Devletleri, 15 - 17 Ekim 2018
On the exponential Diophantine equation ((b1)m21)x(bm2-1)y=(cm)z,
Conference on Diophantine m-tuples and Related Problems-II, Michigan, Amerika Birleşik Devletleri, 15 - 17 Ekim 2018
Elliptic curves containing sequences of consecutive cubes,
2 nd International Conference on Pure and Applied Mathematics, Van, Türkiye, 11 - 13 Eylül 2018
Elliptic curves containing sequences of consecutive cubes
Modular Forms and Langlands Functoriality, Bilecik, Türkiye, 11 - 12 Mayıs 2018
Kuvvet Toplamları Tipinde Bir Diophant Denklemin Çözümleri Üzerine
12 nci Ankara Matematik Günleri, Ankara, Türkiye, 25 - 26 Mayıs 2017
On the Diophantine equation (x 1)k (x 2)k...(lx)k=yn
Journees Arithmetique 2015, Debrecen, Macaristan, 6 - 10 Temmuz 2015, cilt.1
Congruence Subgroups of Modular Group and Hecke Groups
23rd International Conference of the Jangjeon Mathematical Society, Ahvaz, İran, 07 Şubat 2010, ss.1-6
On some recent results concerning exponential Diophantine equations
The 22nd International Conference of Jangjeon Mathematical Society, Karnataka, Hindistan, 13 Ağustos 2009, ss.1-9
On A Diophantine Equation,
Antalya Algebra Days XI, Antalya, Türkiye, 19 Mayıs 2009, ss.38
On Exponential Diophantine Equations I
University Essen Institute für Experimentelle Mathematik, Forschungsseminar Wintersemester, , Essen, Almanya, 21 Ocak 2009, ss.1-10
The Diophantine Equation x^2 + 11^m = y^n
The 20th Int. Congress of Jangjeon Math. Soc., , Bursa, Türkiye, 21 Ağustos 2008, ss.1-5
Two special elliptic curve classes
International Symposium on Complex Analysis, Sibiu, Romanya, 25 Ağustos 2007, ss.1-10