On the exponential Diophantine equation x(2)+2(a) p(b) = y(n)


Zhu H., Le M., SOYDAN G., Togbe A.

PERIODICA MATHEMATICA HUNGARICA, vol.70, no.2, pp.233-247, 2015 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 70 Issue: 2
  • Publication Date: 2015
  • Doi Number: 10.1007/s10998-014-0073-9
  • Journal Name: PERIODICA MATHEMATICA HUNGARICA
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.233-247
  • Keywords: Exponential Diophantine equation, Primitive divisor, Lucas number, Jacobi symbol, PRIMITIVE DIVISORS, LUCAS

Abstract

Let be an odd prime. In this paper we study the integer solutions(x, y, n, a, b) of the equation x(2) + 2(a) p(b) = y(n), x >= 1, y > 1, gcd(x, y) = 1, a >= 0, b >= 0, n >= 3.