PUBLICATIONES MATHEMATICAE-DEBRECEN, vol.98, pp.513-520, 2021 (SCI-Expanded)
A sequence of rational points on an algebraic planar curve is said to form an r-geometric progression sequence if either the abscissae or the ordinates of these points form a geometric progression sequence with ratio r. In this work, we prove the existence of infinitely many rational numbers r such that for each r there exist infinitely many r-geometric progression sequences on the unit circle x(2) + y(2) = 1 of length at least 3.