INTEGERS OF A QUADRATIC FIELD WITH PRESCRIBED SUM AND PRODUCT


Creative Commons License

Bremner A., SOYDAN G.

COLLOQUIUM MATHEMATICUM, cilt.173, ss.25-39, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 173
  • Basım Tarihi: 2023
  • Doi Numarası: 10.4064/cm9023-11-2022
  • Dergi Adı: COLLOQUIUM MATHEMATICUM
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.25-39
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

For given k, $ is an element of Z we study the Diophantine systemx + y + z = k, xyz =lfor x, y, z integers in a quadratic number field, which has a history in the literature. When $ = 1, we describe all such solutions; only for k = 5, 6, do there exist solutions in which none of x, y, z are rational. The principal theorem of the paper is that there are only finitely many quadratic number fields K where the system has solutions x, y, z in the ring of integers of K. To illustrate the theorem, we solve the above Diophantine system for (k, $) = (-5, 7). Finally, in the case $ = k, the system is solved completely in imaginary quadratic fields, and we give (conjecturally) all solutions when $ = k <= 100 for real quadratic fields.