ON THE DIOPHANTINE EQUATION x(2)+7(alpha) . 11(beta) = y(n)


Soydan G.

MISKOLC MATHEMATICAL NOTES, vol.13, no.2, pp.515-527, 2012 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 2
  • Publication Date: 2012
  • Doi Number: 10.18514/mmn.2012.424
  • Title of Journal : MISKOLC MATHEMATICAL NOTES
  • Page Numbers: pp.515-527
  • Keywords: exponential equations, primitive divisors of Lucas sequences, X(2)+2(A)

Abstract

In this paper, we give all the solutions of the Diophantine equation x(2) + 7(alpha) . 11(beta) = y(n), for the nonnegative integers alpha, beta, x, y, n >= 3, where x and y coprime, except when alpha.x is odd and beta is even.