Tezin Türü: Doktora
Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, EĞİTİM BİLİMLERİ ENSTİTÜSÜ, Türkiye
Tezin Onay Tarihi: 2021
Tezin Dili: Türkçe
Öğrenci: Mustafa Çağrı Gürbüz
Özet:
Öğrencilerden günümüzde çok bilgiye sahip olmalarından ziyade mevcut bilgilerini problem çözme, akıl yürütme, iletişim gibi matematiksel düşünmenin temelini oluşturan becerileri kullanarak çeşitli amaçları gerçekleştirmeleri beklenmektedir. Çalışmada matematiksel düşünme, öğrencinin matematik kavramlarını zihninde nasıl yapılandırdığını açıklamaya yönelik olarak ele alınmıştır. Bu yapılandırma süreci ise matematiksel soyutlama çerçevesinden izlenmiştir. Matematiksel soyutlama, matematik kavramının genelleştirilmesi yoluyla kavrama daha kapsamlı bir uygulama alanı oluşturulması, diğer bir ifade ile kavramın özünü ortaya çıkarması işlemidir. Öğrencilerin zihninde bilginin oluşum sürecini doğrudan gözlemlemek oldukça zor bir durum olarak karşımıza çıkmaktadır. Bilginin öğrencinin zihninde nasıl oluştuğu, soyutlandığı ve hangi içsel süreçlerden geçtiği bilinirse öğrenme sürecine etkili müdahalelerde bulunmak kolaylaşacaktır. Bu çalışmada, ortaokul öğrencilerinin temel cebir kavramlarına yönelik soyutlama süreçlerinin incelenmesi amaçlanmıştır. Soyutlama süreçlerinin incelenmesinde RBC+C (Recognizing, Building with, Construct, Consolidation) teorisinde yer alan epistemik eylemler dikkate alınmıştır. Ayrıca araştırma sürecinde öğrencilerin soyutlama süreçlerinin daha iyi gözlenmesini sağlamak için Tahmini Öğrenme Yörüngeleri kullanılmıştır. Öğrenme yörüngelerinin öğrencilerin temel cebir kavramlarındaki başarılarına etkilerinin ve soyutlama süreçlerine olan yansımalarının tespit edilmesi araştırmada ortaya koyulması amaçlanan diğer bir husustur. Araştırma, belirlenen amaçlara ulaşmak için iki aşamalı tasarlanmıştır. İlk olarak öğrencilerin cebirin iki temel kavramı olan denge ve değişken kavramlarını soyutlama süreçlerini daha net görebilmek ve süreçte onların soyutlama yapmalarını desteklemek amacıyla tasarım tabanlı araştırma modelinden faydalanılmıştır. Tasarım tabanlı araştırma, öğrencilerin soyutlama süreçlerinin daha iyi anlaşılabilmesi için öğrenme ortamına müdahale edilmesine olanak sağlamaktadır. Araştırmanın ikinci aşaması ise bir durum çalışması olarak değerlendirilmiştir. Tasarımın uygulanabilirliği ve eksiklikleri sınıf içi gözlemler yoluyla; öğrencilerin soyutlama becerileri ise yarı yapılandırılmış öğrenci görüşmelerinden elde edilen veriler ile analiz edilmiştir. Katılımcılar Bursa İli, Nilüfer İlçesi’nde bir devlet okulunda öğrenim gören 6. sınıf öğrencileri arasından amaçlı örnekleme ile seçilmiştir. Aynı öğrencilerle 7. sınıf düzeyine geçtiklerinde veri toplama sürdürülmüştür. 2016-2017, 2017-2018 eğitim öğretim dönemlerinde araştırmacı ve öğretmen ile birlikte bu sınıfların matematik derslerinde araştırma gerçekleştirilmiştir. Araştırmada veriler; doküman, gözlem, görüşme veri toplama araçlarıyla veri çeşitlemesi yapılarak toplanmıştır. Gözlem ve görüşme verileri içerik analizine, öğrenme yörüngeleri ise geçmişe dönük analiz sürecine tabi tutulmuştur. Bu çalışma, başarı düzeyi yüksek olan öğrencilerin değişkenler arasındaki doğrusal ilişkiyi tanımlayabildikleri ve denklemleri çözebildiklerini göstermektedir. Öğrencilerin, cebirsel ifade ve doğrusal denklem oluşturma gibi genelleme gerektiren durumlar için verilen tüm bilgileri koordine edebildiği, ayrıca doğrusal model kavramını daha soyut durumlarda oluşturabildikleri ve yeni doğrusal model için bir kural ortaya koyabildikleri görülmüştür. Buna ek olarak, bağlamsal problemlere çözümler bulmak için belirledikleri yöntemleri daha tutarlı kullanabildikleri gözlemlenmiştir. Bu durum soyut düşünebilen öğrencilerin veriyi genelleştirebildiğini ve temsili olarak cebirsel ifade kullanabildiğini göstermiştir. Öğrencilerin bağlam içerisinde karşılaştıkları problemleri matematiksel bir yolla açıklamaları soyutlama sürecini analiz etmelerine yardımcı olmuştur. Bu araştırmada öğrencilerin cebir kavramlarını soyutlama becerileri, problem çözme süreçlerinin ve görüşmelerdeki açıklamalarının epistemik olarak analiz edilmesiyle ortaya çıkarılmıştır. Öğrencilerin uygulama öncesinde daha kısır bir düşünceye sahipken süreçte farklı düşünme yollarının farkına vardıkları, farklı cebirsel düşünme yolları ortaya koydukları, başlangıçta sözel veya aritmetik olarak ifade ettikleri matematiksel durumları cebirsel açıklamalara dönüştürdükleri görülmüştür. Araştırmada soyutlama becerisi ile zihnin cebirsel alışkanlıkları arasında birbirini destekleyici argümanlar bulunmuştur. Öğrencilerin cebir ilişkilerindeki gelişimlerini sağlayan iki matematiksel alışkanlık tespit edilmiştir. Bunlar, işlemleri düzenleyerek bir soyutlamaya ulaşmak ve matematiksel bir dil kullanarak genelleme yapmaktır. Bu alışkanlıklar, öğrencilerin aritmetikten cebire geçmelerini kolaylaştırmıştır. Yapma ve fonksiyonel kural oluşturma alışkanlıklarına sahip olan öğrencilerin cebir kavramlarını soyutlama süreçlerinde daha avantajlı olduğu söylenebilir. Soyutlama sürecinde yeni bir yapı ve matematiksel dilden bahsedildiği için soyutlama sürecindeki ilişkilerin anlaşılması fonksiyonel kural oluşturma alışkanlığına sahip öğrencilerin daha kolay inşa etmelerine olanak sağlamıştır. Cebirsel alışkanlıklarda ise öğrencilerin işlemlerden soyutlama girişimleri genellikle yeni bir dil yerine kısa bir yol bulmak ve açıklayabilmek üzerine inşa edilmektedir. Cebirin iki temel kavramınu öğretmeye yönelik bir yaklaşım üzerine kurulan araştırma, etkili bir cebir eğitimini teşvik etme çabalarını koordine etme ve öğrencilerin düşüncelerindeki önemli kilometre taşlarını belirlemek amacıyla önemlidir. Öğrenme yörüngeleri, öğretmenlere ve uygulayıcılara kendi eğitsel uygulamalarına entegre edilebilmesi için sistematik bir yol sunar. Öğrencilerin cebir kavramlarını soyutlamaları öğretimde etkili bir araç olarak kullanılabileceğine yönelik öğretmenlere hizmet içi eğitimler verilebilir ve soyutlama mekanizması, daha açıklayıcı ve kullanışlı bir biçimde matematik dersi öğretim programlarına yansıtılabilir.