Modüler formlar, eliptik eğriler ve uygulamaları


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, FEN BİLİMLERİ ENSTİTÜSÜ, FEN BİLİMLERİ ENSTİTÜSÜ, Türkiye

Tezin Onay Tarihi: 2011

Tezin Dili: Türkçe

Öğrenci: İlker İnam

Danışman: Osman Bizim

Özet:

Bu çalışmada matematiğin son dönemdeki popüler iki teorisi, Eliptik Eğriler ve Modüler Formlar ele alınmıştır. İspatlandıktan sonra Modülarite Teoremi adını alan Taniyama-Shimura-Weil Konjektürü sayesinde birbirine bağlanan bu iki teorinin çeşitli uygulamaları mevcuttur. Bu çalışmada, bu teorilerin birbirleriyle olan ilişkisi kullanılarak Eliptik Eğriler Teorisi'nde yer alan bir açık problem, Modüler Formlar Teorisi kullanılarak çözülmüştür. Birinci bölümde, çalışmanın ilerleyen kısımlarında kullanılacak olan bazı kavramlar tanıtılmıştır. İkinci bölümde Eliptik Eğriler Teorisi'ne giriş yapılmış, sonlu cisimler üzerinde tanımlı bazı eliptik eğri aileleri hakkında elde edilen sonuçlar verilmiştir. Bu bölümün son kısmında üzerinde tanımlı eliptik eğrilerin özellikleri ele alınmış ve bazı uygulamalar yapılmıştır. Üçüncü bölüm modüler formlara ayrılmıştır. Tamsayı ve yarım tamsayı ağırlıklı formlar tanıtılmış, bu formlar üzerindeki Hecke operatörlerinin tanımları verilmiştir. Bu bölüm yukarıda adı geçen Modülarite Teoremi'nin ifadesinin verilmesi ile sona ermiştir. Çalışmanın temelini oluşturan dördüncü ve son bölümünde, rastgele seçilen bir eliptik eğrinin Selmer grubunun mertebesinin hesaplanması problemi ele alınmıştır. Literatürde bu haliyle çözümü bulunmayan problem eliptik eğrilerin twist ailelerine kısıtlanarak modüler formların analitik fonksiyonlar olması özelliği yardımıyla kısmen çözülmüştür. Bunun için matematiğin ödüllü konjektürlerinden Birch ve Swinnerton-Dyer Konjektürü'nün doğru olduğu kabul edilmiş ve J. L. Waldspurger'in önemli bir teoremi kullanılmıştır. Hesaplanan Selmer grubu mertebelerinin dağılımı basit bir fonksiyon yardımıyla ifade edilmiştir.