Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Uludağ Üniversitesi, Türkiye
Tezin Onay Tarihi: 2017
Tezin Dili: Türkçe
Öğrenci: AYŞEGÜL YABACI
Danışman: DENİZ SIĞIRLI
Özet:Karar ağaçları, sınıflama ve regresyon probleminin çözümünde çok aşamalı ve ardışık bir yaklaşım ile karmaşık yapıdaki verileri aşamalı bir hale dönüştürerek basit bir karar verme işlemini gerçekleştirmektedir. Sağkalım ağaçları ve ormanları ise parametrik ve yarı parametrik modellerin popüler parametrik olmayan bir alternatifidir. Bu yöntemler diğer yöntemlere göre oldukça esnek olup daha önceden belirlenmeden etkileşimlerin otomatik olarak ortaya konulmasını sağlarlar. Koşullu çıkarsama ağaçları (KÇA) yöntemi, iyi tanımlanmış koşullu çıkarsama prosedürleri içinde ağaç tabanlı regresyon modellerinin parametrik olmayan bir sınıfıdır. Koşullu çıkarsama ağaçları yöntemi sınıflayıcı, sıralayıcı, sayısal, sansürlü ve bunlara ek olarak çoklu yanıt değişkenleri ve rasgele ölçekle ölçeklendirilmiş ortak değişkenleri içeren tüm regresyon problemlerinde uygulanabilir. Koşullu çıkarsama ormanları (KÇO), çok sayıda KÇA’nın birleştirilmesiyle gerçekleştirilen bir sağkalım ormanı yöntemidir. KÇO yöntemi, sansürlenme varlığında topluluk öğrenmesi için birleştirilmiş ve esnek bir yapı önermektedir. Bu yöntem sağdan sansürlü veriler için hastaların sağkalım zamanının tahmininde kullanılır. Rasgele sağkalım ormanları (RSO) yöntemi, rasgele ormanlar yönteminin bir uzantısıdır. Bu yöntemde rasgelelik iki şekilde tanımlanmaktadır. İlk olarak ağacın büyümesi için verinin rasgele olarak bootstrap örnekleminden çekilmesi, ikinci olarak ise ağacın her bir düğümünde ayırma için ortak değişkenlerin alt kümelere rasgele olarak seçilmesidir. RSO yöntemi, düşük genelleme hatasını sürdürürken zengin sınıf ayrımları sağlamaktadır. Bu çalışmada KÇA, KÇO ve RSO yöntemleri açıklanmış ve simülasyon çalışması ile sağkalım ormanları yöntemleri olan KÇO ve RSO’nun performansları karşılaştırılmıştır. Simülasyon çalışmasından elde edilen sonuçlara göre RSO yönteminin KÇO’ ya göre daha iyi performans gösterdiği belirlenmiştir.