Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, FEN BİLİMLERİ ENSTİTÜSÜ, Türkiye
Tezin Onay Tarihi: 2019
Tezin Dili: Türkçe
Öğrenci: AZİZ ATABAY
Danışman: Cengizhan Murathan
Özet:Yüksek lisans tezi olarak hazırlanan bu çalışma beş bölümden oluşmaktadır. Birinci bölüm giriş bölümüdür. İkinci bölümde bu çalışmanın sonraki bölümlerinde kullanılan tanım ve kavramlar verilmiştir. Üçüncü bölümde konneksiyonlar işlendi. Dördüncü bölüm iki Riemann manifold arasında tanımlı harmonik ve biharmonik dönüşümlere ayrılmıştır. Beşinci bölümde biharmonik olma denklemi kullanılarak pozitif Ricci eğriliğe sahip olmayan bir Riemann manifoldda ∫ ‖𝐻‖2𝑣𝑔 < ∞ 𝑀 olma koşulunu sağlayan biharmonik yüzeylerin minimal olduğu gösterildi. Daha sonra biharmonik Riemann dönüşümlerin bir özel çeşidi olan ve 3 boyutlu bir Riemann manifolddan bir yüzeye tanımlı biharmonik Riemann submersiyonlar çalışıldı.