DERİN ÖĞRENME YAKLAŞIMIYLA GERÇEK ZAMANLI GÖRÜNTÜLER ÜZERİNDE TEHLİKELİ NESNE TESPİTİ


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği, Türkiye

Tezin Onay Tarihi: 2024

Tezin Dili: Türkçe

Öğrenci: Şuayip Aykut Atmaca

Danışman: Burcu Çağlar Gençosman

Özet:

Teknolojinin gelişmesiyle birlikte, yapay zekâ alanında yapılan çalışmalarda ciddi bir artış meydana gelmiştir. Toplumsal yaşamın her alanında yapay zekâ çalışmaları gerçekleştirilmekle beraber güvenlik sistemleri alanında da çalışmalar yapılmaktadır. Bu alan ile ilgili çok karşılaşılan konulardan biri, güvenlik kameraları üzerinde suçun tespit edilmesidir. Bu ihtiyacın en önemli sebebi, günümüzde güvenlik kameralarının yaygın olarak kullanılmasına rağmen suçun ve suçlunun tespiti için insan operatörlerin uzun saatler boyunca ilgili bölgeyi farklı açılardan görüntüleyen video kayıtlarını izlemek zorunda olmasıdır. Bu çalışmada, tehlikeli nesnelerle işlenen suçları derin öğrenme yöntemleri ile güvenlik kameraları üzerinde gerçek zamanlı tespit edebilmek ve ilgili kişileri anlık olarak uyarabilmek amaçlanmıştır. Çalışma kapsamında tehlikeli nesnelerden ‘tabanca’, ‘tüfek’ ve ‘bıçak’ sınıf etiketleri için herkese açık veri setleri kullanılarak popüler derin öğrenme mimarilerinden YOLOv5, YOLO NAS, YOLOv8, YOLOv9 ve MobileNet mimarileri kullanılmıştır. Eğitimler sonucunda en başarılı model seçilerek web tabanlı bir uygulama geliştirilmiş ve gerçek zamanlı olarak uygulama üzerinde ön tanımlı kişilere tehlike durumunda bildirim gönderebilmek hedeflenmiştir. Çalışmadan beklenen fayda, insan kaynaklı hataların önüne geçilmesi ve güvenlik personeli maliyetlerinin azaltılmasının yanında suçun gerçek zamanlı tespitiyle birlikte önlenebilme olasılığını arttırmaktır.