Matematiksel dizayn teori üzerine


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, FEN BİLİMLERİ ENSTİTÜSÜ, Türkiye

Tezin Onay Tarihi: 2000

Tezin Dili: Türkçe

Öğrenci: Ayşegül Demirtola

Danışman: BASRİ ÇELİK

Özet:

Elemanlarına noktalar demlen bir AT ve bloklar denilen bir B cümlesi ve bu iki cümle arasında bir o bağıntısı için İV ve B ayrık cümleler ise S=(N,B,o) üçlüsüne bir geometrik yapı denir. Eğer N ve B sonlu ise S ye bir sonlu yapı adı verilir. Bu tezde bir takım geometrik yapılar ve özel geometrik yapılar olan dizaynlar tanıtılmıştır. Birinci bölümde daha sonraki bölümlerin dayanağı olacak temel tanımlar ve teoremler verilmiştir. İkinci bölümde, birinci bölümdeki tanım ve teoremlerin daha iyi anlaşılmasını sağlayacak örnekler verilmiştir. Ayrıca sonlu yapıların bazı kombinatorsel özellikleri incelenmiştir. İkinci bölümün ikinci kısmında bazı sonsuz dizayn örnekleri üzerinde inceleme yapılmıştır. İkinci bölümün son kesiminde ise simetrik dizaynlar tanıtılmış ve bunlarla ilgili kombinatorsel sonuçlar verilmiştir. Üçüncü ve son bölümde ise bazı simetrik dizaynların var olması için sağlaması gereken şartlan ifade eden BRUCK-RYSER-CHOWLA (BRC) teoremi verilmiştir. Son olarak BRC teoreminin özel incelemeleri yapılmıştır.