Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, FEN BİLİMLERİ ENSTİTÜSÜ, Türkiye
Tezin Onay Tarihi: 2019
Tezin Dili: Türkçe
Öğrenci: ŞERİFE ÇAKIRTAŞ
Danışman: Osman Bizim
Özet:Bu çalışmada PSL(2, R) ve bu grubun ayrık alt gruplarının özellikleri ele alınmıştır. Bu grup ve hiperbolik geometri arasındaki ilişki üzerinde durulmuştur. PSL(2, R) grubunun ayrık alt grupları olan Fuchs grupları ve modüler grubun cebirsel yapıları ele alınmıştır. Çalışmanın ikinci bölümünde, daha sonra ihtiyaç duyulacak olan bazı tanım ve teoremler verilmiştir. Dördüncü bölümde PSL(2, R) grubunun özellikleri ele alınmış ve bu grubun üst yarı düzlem üzerindeki hareketi incelenmiştir. Bu bölümde hiperbolik geometrinin üst yarı düzlem modeli oluşturulmuş ve PSL(2, R) deki dönüşümlerin hiperbolik uzaklığı ve hiperbolik alanı değişmez bıraktığı görülmüştür. Beşinci bölümde PSL(2, R) grubunun ayrık alt grupları olan Fuchs grupları incelenmiştir. Bu gruplar için temel bölge ve döşeme kavramları ele alınmıştır. Fuchs gruplarının bölüm uzayları oluşturulmuş ve bu bölüm uzayları ile kompakt Riemann yüzeyleri arasındaki ilişki incelenmiştir. Son bölümde modüler grup ele alınmıştır. Modüler grubun üreteçleri, temel bölgesi ve temsili verilmiştir.