Derin öğrenme tabanlı oftalmoloji görüntülerinde veri analizi ve güvenliği


Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği, Türkiye

Tezin Onay Tarihi: 2022

Tezin Dili: Türkçe

Öğrenci: CANER ŞEN

Danışman: Gıyasettin Özcan

Özet:

Oftalmolojik hastalıkların zamanında teşhisi yapılmadığında ve tedavisi olunmadığında körlüğe kadar giden sonuçlar ortaya çıkmaktadır. Birçok çalışma, erken tedavinin görmeyi tehdit eden bu hastalıklara yakalanılmasının önüne geçildiğini göstermiştir. Örneğin diyabetik retinopati hastalığı dünyadaki şeker hastalarının %80'ini etkilemektedir ve ikinci en büyük körlük nedenlerindendir. Katarakt ise genelde yaşa bağlı bir hastalık olduğu gibi zamanla görme bulanıklığını artırarak hastanın görüşünü engeller. Bu çalışmada oftalmolojik hastalıkların tespiti için derin öğrenme mimarileri kullanılmıştır. Böylece otomatik tespit sistemleri geliştirilerek sağlık hizmetlerinin hızlanması ve uzmanlara yardımcı olunması amaçlanmıştır. Bu amaçla oluşturulan modellerin yüksek doğruluğa sahip olmaları gerekmektedir. Tez kapsamında, oftalmolojik hastalıklardan diyabetik retinopati ve kataraktın tespiti üzerine çalışılmıştır. İnsan retinasına ait bu oftalmolojik hastalıkları tespit etmek için; hastalıklı görüntü veri setleri üzerinde görüntü ön işleme, derin öğrenme ve transfer öğrenimi gibi yöntemlerle modeller geliştirilmiştir. Geliştirilen modeller ile, literatüre katkı sağlayan oranda yüksek sınıflandırma başarısı elde edilmiştir. Diyabetik retinopati için oluşturulan en iyi modelin 5 sınıflandırma ile %96,6 doğruluk oranına ve katarakt için oluşturulan en iyi modelin 2 sınıflandırma ile %97,2 doğruluk oranına ulaştığı ölçülmüştür. Elde edilen doğruluk oranları literatüre katkı sağlamaktadır. Yapılan analizlerde, transfer öğrenimi yönteminin klasik derin öğrenme yöntemlerinden en az %2 olmak üzere daha iyi bir sınıflandırma yapabildiği görülmüştür. Her hastalık için oluşturulan en iyi modeller, uzmanlar tarafından kullanılmak üzere bir web arayüzü ortamında kullanıma sunulmuştur. Bir sonraki aşamada web arayüzünde toplanan verilerin güvenlik gereksinimleri dikkate alınmıştır. Bu doğrultuda sunucuda saklı veriler, literatürde belirtilen en güvenilir algoritma ile şifrelenmekte olup hasta verisi gizliliği hedeflenmiştir. Bu sayede verilerin siber ortamda güvenilir şekilde saklanması sağlanmıştır.