Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, FEN BİLİMLERİ ENSTİTÜSÜ, Türkiye
Tezin Onay Tarihi: 2019
Tezin Dili: Türkçe
Öğrenci: Elif Kızıldere
Danışman: GÖKHAN SOYDAN
Özet:Bu tez üç bölümden oluşmaktadır. Birinci bölümde ilk olarak sayılar teorisinden, cebirden ve cebirsel sayılar teorisinden bilinen bazı temel kavramlar verilmiştir. Sonrasında ikinci mertebeden tekrarlama bağıntılı diziler, ilkel bölen teoremi, logaritmalarda lineer formlar gibi Diophant denklemlerin modern teorisinde önemli yer tutan kavramlar hakkında bilgiler verilmiştir. Tezin ikinci bölümünde ((c+1)m^2+1)^x+(cm^2-1)^y=(am)^z Diophant denkleminin bazı koşullar altında tek çözümünün (x,y,z)=(1,1,2) olduğu gösterilmiştir. Dolayısıyla bu denklem için Terai sanısı doğrulanmıştır. Tezin son bölümünde ise Nagell'in 2^x+5^y=3^z ve 4^x+7^y=5^z Diophant denklemlerinin genellemesi olan (n-1)^x+(n+2)^y=n^z Diophant denkleminin tüm pozitif tamsayı çözümleri bulunmuştur. İspatlarda kullanılan materyaller, sayılar teorisindeki elemanter yöntemler, Baker teorisi ve Lucas dizilerinin ilkel bölen teoremidir.