Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: Bursa Uludağ Üniversitesi, FEN BİLİMLERİ ENSTİTÜSÜ, Türkiye
Tezin Onay Tarihi: 2019
Tezin Dili: Türkçe
Öğrenci: Mehmet Zam
Danışman: ERSEN YILMAZ
Özet:Karayollarında sürücü hatalarının neden olduğu trafik kazalarını en aza indirmeyi amaçlayan sürüş güvenliği arttırılmış araçlar tasarlamak günümüz otomotiv teknolojisinin en önemli konularından biridir. Bu amaçla araçlardaki aktif ve pasif güvenlik sistemlerinin sayısı gün geçtikçe artmaktadır. Aktif güvenlik sistemlerinden birisi olan trafik işaretlerini tanıma sistemleri ön kameralar aracılığı ile trafik işaretlerini tanıyan ve sürücüleri bilgilendiren sistemlerdir ve yeni nesil araçlarda yerini almaya başlamıştır. Gerçek zamanlı çalışan bu sistemler özellikle karmaşık yol koşullarında istenilen performansa henüz ulaşamamışlardır ve önemli bir araştırma konusu olmaya devam etmektedirler. Bu çalışmada trafik işaretlerinin tanınmasını amaçlayan evrişimsel sinir ağları (ESA) temelli bir sürücü güvenlik destek sistemi (SGDS) önerilmiştir. Trafik işareti veri kümesi olarak Alman Trafik îşareti Tanıma Veri Kümesi (GTSRB) kullanılmıştır. Eğitim kümesindeki imgelerin sayısal orantısızlığı nedeniyle veri çoğaltma metotları kullanılarak eğitim kümesindeki imge sayıları arttırılmıştır. LeNet-5, AlexNet, GoogleNet ve ResNet ESA mimarileri kullanılarak oluşturulan ESA modellerinin katman yapısı ile en uygun eğitilme parametrelerine deneysel olarak karar verilmiştir. Yapılan deneyler sonucunda ResNet mimarisi kullanılarak önerilen SGDS’nin %98,10 sınıflandırma doğruluğuna sahip olduğu gösterilmiştir. Ayrıca, GTSRB kullanılarak eğitilen SGDS’nin Türkiye karayollarında çekilmiş bir grup trafik işareti imgesi üzerindeki başarım sonuçlan sunulmuştur.