Olgunlaşmamış şeftali meyvesini doğal bahçe koşullarında alınmış görüntülerde görüntü işleme teknikleri ve yapay sınıflandırıcılarla saptayarak sayan algoritmaların geliştirilmesi


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Uludağ Üniversitesi, Türkiye

Tezin Onay Tarihi: 2012

Tezin Dili: Türkçe

Öğrenci: FERHAT KURTULMUŞ

Danışman: ALİ VARDAR

Özet:

Bu çalışmanın amacı ülkemiz için ekonomik değeri yüksek olan şeftali meyvesinin verim haritalamasına yönelik olarak meyvenin erken gelişme döneminde ve doğal ortamından alınmış sıradan renkli görüntülerinden meyveleri tespit ederek sayabilecek algoritmaların geliştirilmesi ve en iyi algoritma performanslarının ortaya koyulmasıdır. Algoritmaların geliştirilmesi ve test edilmesi için görüntüler Bursa Barakfaki köyünde yerel bir çiftçiye ait Elegance Lady çeşidi şeftali bahçesinden alınmıştır. Çalışmada histogram eşitleme ve logaritma dönüşümü gibi görüntü işleme tekniklerinden yararlanılarak doğal koşullarda alınmış görüntülerin aydınlanma koşulları zenginleştirilmiştir. Görüntü işleme tekniklerinden yararlanarak geliştirilen algoritmalar renk, şekil ve doku bilgisini kullanılan öznitelik çıkarma yöntemleriyle görüntülerden çıkarmışlardır. Bu çalışmada kullanılan öznitelik çıkarma yöntemleri, olgunlaşmamış şeftali bitkisini renkli görüntülerde saptama anlamında yenidirler. Çıkarılan özniteliklerle farklı sınıflandırıcıların performanslarını ortaya koymak amacıyla 7 adet sınıflandırıcı eğitilerek denenmiştir. Diskriminant analizi, K-en-yakın komşu, naive Bayes, regresyon ağaçları, sınıflandırma ağaçları, yapay sinir ağları ve destek vektör makinası bu çalışmada kullanılan sınıflandırıcılardır. Görüntülerde arka plan elemesi yapmak ve potansiyel meyve bölgelerini saptamak amacıyla üç farklı görüntü tarama yöntemi geliştirilmiştir. Algoritmaların meyve olarak sınıflandırdığı alt-pencereler blob analiziyle tekilleştirilip meyve sayıları tespit edilmiştir. Farklı meyve tarama yöntemleri, istatistiksel ve deneysel yollarla belirlenen farklı öznitelik birleşimleri, farklı yapay sınıflandırıcılarının kullanımıyla değişik algoritmalar türetilmiş, eğitim ve test setleri üzerinde denemeler gerçekleştirilmiştir. Geliştirilen algoritmaların performansları farklı aydınlanma koşullarını içerecek şekilde karşılaştırılmıştır. Çalışma kapsamında geliştirilen algoritmaların bazılarında % 85'ler düzeyinde saptama başarısı elde edilmiştir. Geliştirilen algoritmalar doğal bahçe koşullarında alınmış görüntülerdeki aydınlanma değişimlerinden fazla etkilenmemişlerdir.