İstatistiksel şekil analizinde iki örneklem testlerinin karşılaştırılması


Tezin Türü: Doktora

Tezin Yürütüldüğü Kurum: Uludağ Üniversitesi, Türkiye

Tezin Onay Tarihi: 2011

Tezin Dili: Türkçe

Öğrenci: GÖKHAN OCAKOĞLU

Danışman: İLKER ERCAN

Özet:

Şekil; nesneden öteleme, ölçekleme ve döndürme etkileri kaldırıldığında geriye kalan geometrik bilgidir. İstatistiksel Şekil Analizi, şekillerin geometrik yapılarını incelemek için kullanılan yöntemleri içermektedir. İstatistiksel şekil analizi literatüründe iki örneklem karşılaştırma problemi üzerine temellenen testler mevcuttur. Bu çalışmada, istatistiksel şekil analizi literatüründe kullanılan Hotelling T2, Goodall F, James FJ testleri ve min test istatistiğinin tip I hata oranına göre performanslarının karşılaştırılması amaçlanmıştır. Simulasyon çalışmasında, şekil uzayının seçimi, farklı örneklem büyüklükleri ve varyans değerleri göz önünde bulundurularak bu testlerin klasik, bootstrap ve permütasyon versiyonlarıyla birlikte ilgili p-değerleri hesaplanmıştır. Ayrıca isotropik ve isotropik olmayan varyans yapıları da dikkate alınmıştır. Simulasyon sonuçları, incelenen tüm örneklem büyüklüklerinde ve varyans değerlerinde isotropik varyans yapısına göre tanjant şekil uzayında hesaplanan Hotelling T2 testinin permütasyon versiyonun en iyi performansa, şekil uzayının geometrisiyle birlikte kompleks aritmetikten faydalanan min test istatistiğinin klasik versiyonunun ise en kötü performansa sahip olduğunu göstermiştir. İsotropik olmayan varyans yapısı için şekil uzayı olarak tanjant uzayı kullanıldığında Hotelling T2 testinin permütasyon ve klasik versiyonları, Goodall F testinin bootstrap ve permütasyon versiyonları ve James Fj testinin permütasyon versiyonu, şekil uzayının geometrisiyle birlikte kompleks aritmetikten faydalanıldığı durumda ise Hotelling T2 testinin permütasyon ve klasik versiyonları, Goodall F testinin permütasyon versiyonu, James Fj testinin permütasyon versiyonu ve min test istatistiğinin permütasyon versiyonunun en iyi performansı gösterdiği görülmektedir. İsotropik olmayan varyans yapısı için, en kötü performansı şekil uzayının kullanımına bağlı her iki durum içinde geçerli olmak üzere Goodall F testinin klasik versiyonu ve min test istatistiğinin klasik versiyonunun gösterdiği görülmektedir.