Dynamic random walk-based sled dog optimization algorithm and artificial neural network for optimizing design engineering problems


Sait S. M., Mehta P., GÜRSES D., YILDIZ A. R.

Materialpruefung/Materials Testing, cilt.67, sa.11, ss.1803-1810, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 67 Sayı: 11
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1515/mt-2025-0172
  • Dergi Adı: Materialpruefung/Materials Testing
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex
  • Sayfa Sayıları: ss.1803-1810
  • Anahtar Kelimeler: brake pedal, engineering optimization problem, nature-inspired algorithms, sled dog optimization algorithm, structural optimization
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

This research presents a modified version of the sled dog optimizer (SDO) to enhance optimization performance across various benchmark functions and real-world applications. The proposed modification introduces adaptive mechanisms to balance exploration and exploitation, thereby improving convergence speed and solution accuracy. Experimental results demonstrate that the modified SDO outperforms the standard SDO and other contemporary metaheuristic algorithms in terms of optimization efficiency and robustness. Comparative analysis of standard test functions and engineering design problems confirms the superiority of the proposed approach.