QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, cilt.21, sa.1, ss.3-29, 2024 (SCI-Expanded, Scopus)
The key idea in this paper is to propose multi-labels classification algorithms to handle benchmark thermal datasets that are practically associated with different data characteristics and have only one health condition (damaged composite materials). A suggested alternative approach for extracting the statistical contents from the thermal images, is also employed. This approach offers comparable advantages for classifying multi-labelled datasets over more complex methods. Overall scored accuracy of different methods utilised in this approach showed that Random Forest algorithm has a clear higher performance over the others. This investigation is very unique as there has been no similar work published so far. Finally, the results demonstrated in this work provide a new perspective on the inspection of composite materials using Infrared Pulsed Thermography.