TANGENTIALLY CUBIC SUBMANIFOLDS OF E<SUP>m</SUP>


Ozturk G., Bayram B. (., ARSLAN K.

INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, cilt.3, sa.2, ss.112-117, 2010 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 3 Sayı: 2
  • Basım Tarihi: 2010
  • Dergi Adı: INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI)
  • Sayfa Sayıları: ss.112-117
  • Anahtar Kelimeler: Biharmonic surfaces, Tangentially cubic surfaces
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

In the present study we consider the submanifold M of E-m satisfying the condition Delta H, e(i) = 0, where H is the mean curvature of M and e(i) is an element of TM. We call such submanifolds tangentially cubic. We proved that every null 2- type submanifold M of E-m is tangentially cubic. Further, we prove that the pointed helical geodesic surfaces of E-5 with constant Gaussian curvature are tangentially cubic.