Uncertainty Assessment of the Impacts of Climate Change on Streamflow in the Iznik Lake Watershed, Türkiye


Tezel A. Ç., AKPINAR A., Bor A., Elçi Ş.

Water (Switzerland), cilt.18, sa.2, 2026 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 2
  • Basım Tarihi: 2026
  • Doi Numarası: 10.3390/w18020187
  • Dergi Adı: Water (Switzerland)
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, Environment Index, Geobase, INSPEC
  • Anahtar Kelimeler: climate change, CMIP5, Iznik Lake Watershed, streamflow simulation, SWAT+ model, uncertainty analysis
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Study region: This study focused on the Iznik Lake Watershed in northwestern Türkiye. Study focus: Climate change is increasingly affecting water resources worldwide, raising concerns about future hydrological sustainability. This study investigates the impacts of climate change on river streamflow in the Iznik Lake Watershed, a critical freshwater resource in northwestern Türkiye. To capture possible future conditions, downscaled climate projections were integrated with the SWAT+ hydrological model. Recognizing the inherent uncertainties in climate models and model parameterization, the analysis examined the relative influence of climate realizations, emission scenarios, and hydrological parameters on streamflow outputs. By quantifying both the magnitude of climate-induced changes and the contribution of different sources of uncertainty, the study provides insights that can guide decision-makers in future management planning and be useful for forthcoming modeling efforts. New hydrological insights for the region: Projections indicate wetter winters and springs but drier summers, with an overall warming trend in the study area. Based on simulations driven by four representative grid points, the results at the Karadere station, which represents the main inflow of the watershed, indicate modest changes in mean annual streamflow, ranging from −7% to +56% in the near future and from +19% to +54% in the far future. Maximum flows (Qmax) exhibit notable increases, ranging from +0.9% to +47% in the near future and from +21% to +63% in the far future, indicating a tendency toward higher peak discharges under future climate conditions. Low-flow conditions, especially in summer, exhibit the greatest relative variability due to near-zero baseline discharges. Relative change analysis revealed considerable differences in Karadere and Findicak sub-catchments, reflecting heterogeneous hydrological responses even within the same basin. Uncertainty analysis, conducted using both an ANOVA-based approach and Bayesian Model Averaging (BMA), highlighted the dominant influence of climate projections and potential evapotranspiration calculation methods, while land use change contributed negligibly to overall uncertainty.