ON THE CHEBYSHEV POLYNOMIAL COEFFICIENT PROBLEM OF BI-BAZILEVIC FUNCTIONS


Creative Commons License

Altınkaya Ş., Yalçın Tokgöz S.

Turkish World Mathematical Society Journal of Applied and Engineering Mathematics, cilt.10, sa.1, ss.254-258, 2020 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 1
  • Basım Tarihi: 2020
  • Dergi Adı: Turkish World Mathematical Society Journal of Applied and Engineering Mathematics
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.254-258
  • Anahtar Kelimeler: Chebyshev polynomials, analytic and univalent functions, bi-univalent functions, bi-Bazilevic functions, coefficient bounds, subordination, Fekete-Szego inequality, FEKETE-SZEGO PROBLEM, UNIVALENT FUNCTIONS, GENERAL SUBCLASS, BOUNDS
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

A function said to be bi-Bazilevic in the open unit disk U if both the function and its inverse are Bazilevic there. In this paper, we will study a newly constructed class of bi-Bazilevic functions. Furthermore, we establish Chebyshev polynomial bounds for the coefficients, and get Fekete-Szego inequality, for the class B(beta, t).