Evaluation of Enset Fabric Reinforced Green Composite as Sound Absorber Structure


Temesgen A. G., EREN R., AYKUT Y., SÜVARİ F.

TEKSTIL VE KONFEKSIYON, cilt.31, sa.2, ss.73-81, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 2
  • Basım Tarihi: 2021
  • Doi Numarası: 10.32710/tekstilvekonfeksiyon.688371
  • Dergi Adı: TEKSTIL VE KONFEKSIYON
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.73-81
  • Anahtar Kelimeler: Acoustic Property, Air Permeability, Enset Fabric, Green Composite, Noise, Porosity, ABSORPTION PROPERTY, POLYURETHANE FOAMS
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Noise is a problem that should be reduced in a variety of places. Fibrous structures are some of the most commonly used materials for sound absorption applications. Enset fibers have a limited use in technical textile applications especially in packaging sector and are mostly left as an agro waste materials. The aim of this research work was to investigate the acoustic property of this new alternative natural fiber (fabric) and its green composite material. The sound absorption performance of enset fabric and its green composite was determined with impedance tube method. The porosity and void structure of enset fibers were studied by scanning electron microscope (SEM) for analysis of enset fabric and enset fabric reinforced composite sound dissipation mechanism. The sound absorption coefficient of enset fabric could only reach to 0.5 level with 5 layers of enset fabric after 3500 Hz frequency. Composite structures with increasing number of fabric layers decreased sound absorption frequency interval. With 5 layers composite (5 fabric layers in the composite), a sound absorption coefficient remained over 0.5 at a large frequency interval between 2830 and 6000 Hz while it was reaching to 0.9 at around 2500 Hz frequency. Increasing the ratio of bio resin to enset fabric caused the sound absorption behavior of composite material tend to shift from higher to medium frequency regions.