Several new integral inequalities via Caputo fractional integral operators


ÖZDEMİR M. E., Butt S. I., Ekinci A., Nadeem M.

FILOMAT, cilt.37, sa.6, ss.1843-1854, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 6
  • Basım Tarihi: 2023
  • Doi Numarası: 10.2298/fil2306843e
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED)
  • Sayfa Sayıları: ss.1843-1854
  • Anahtar Kelimeler: Caputo-Fractional integral, Convex function, Hermite – Hadamard inequality, Hölder inequality, Quasi – convex, s−convex, s−Godunova –Levin type
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

In this paper, we establish several new integral inequalities including Caputo fractional derivatives for quasi-convex, s-Godunova-Levin convex. In order to obtain our results, we have used fairly elementary methodology by using the classical inequalities such that Holder inequality, Power mean inequality and Weighted Holder inequality. This work is motivated by Farid et al in [17]. Especially we aim to obtain inequalities involving only right-sided Caputo-fractional derivative of order alpha.