INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, vol.16, no.6, pp.809-821, 2018 (ESCI)
In this paper, by means of the degree sequences (DS) of graphs and some graph theoretical and combinatorial methods, we determine the algebraic structure of the set of simple connected graphs according to two graph operations, namely join and Corona product. We shall conclude that in the case of join product, the set of graphs forms an abelian monoid whereas in the case of Corona product, this set is not even associative, it only satisfies two conditions, closeness and identity element. We also give a result on distributive law related to these two operations.