INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, cilt.60, ss.799-809, 2012 (SCI-Expanded)
A three-dimensional (3-D) transient numerical analysis was performed inside an automobile cabin during cooling period. A three-dimensional vehicle cabin including glazing surfaces was modelled by using the real dimensions of a car. A virtual manikin with real dimensions and physiological shape was added to the model of the vehicle cabin, and it was assumed that the manikin surfaces were subjected to constant temperature. The virtual manikin was divided into 17 parts in standing posture to evaluate the local heat transfer characteristics of the human body during transient cooling period. We considered three different cases that the cooling capacity of the automobile cabin was same for all cases. Three-dimensional fluid flow, temperature distribution and heat transfer characteristics inside the automobile cabin were calculated with different type of inlet vents. Comparisons of the numerical results were presented and discussed.