Dynamic analysis of involute spur gears with asymmetric teeth


KARPAT F., Ekwaro-Osire S., ÇAVDAR K., Babalik F. C.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, vol.50, no.12, pp.1598-1610, 2008 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 50 Issue: 12
  • Publication Date: 2008
  • Doi Number: 10.1016/j.ijmecsci.2008.10.004
  • Journal Name: INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.1598-1610
  • Keywords: Gear, Asymmetric teeth, Dynamic load, Transmission error, Design, TOOTH PROFILE MODIFICATIONS, STATIC TRANSMISSION ERROR, COMPUTER-AIDED ANALYSIS, CONTACT-RATIO, SURFACE TEMPERATURES, NUMERICAL-SOLUTION, FILM THICKNESS, DESIGN, LOAD
  • Bursa Uludag University Affiliated: Yes

Abstract

New gear designs are needed because of the increasing performance requirements, such as high load capacity, high endurance, low cost, long life, and high speed. In some applications, such as in wind turbines, the gears experience only uni-directional loading. In these instances, the geometry of the drive side does not have to be symmetric to the coast side. This allows for the designing of gears with asymmetric teeth. In previous studies related to bending stress and load capacity, high performance has been achieved for gears with asymmetric teeth. These gears provide flexibility to designers due to their non-standard design. If they are correctly designed, they can make important contributions to the improvement of designs in aerospace industry, automobile industry, and wind turbine industry. At high operation speeds, there is always a concern of dynamic loads and vibrations of equipment. Therefore, there is a need to fully understand the dynamic behavior of gears with asymmetric teeth. Thus, the primary objective of this paper is to use dynamic analysis to compare conventional spur gears with symmetric teeth and spur gears with asymmetric teeth. The secondary objective is to optimize the asymmetric tooth design in order to minimize dynamic loads. This study offers preliminary results to designers for understanding dynamic behavior of spur gears with asymmetric teeth. For this study, a dynamic model was developed, using MATLAB. and used for the prediction of the instantaneous dynamic loads of spur gears with symmetric and asymmetric teeth. Furthermore, a 2-D three-tooth model was developed for finite element analysis. Fast Fourier transform was used for the frequency analysis of the static transmission errors. It is shown that generally, the dynamic factor, for spur gears with asymmetric teeth, increases with increasing pressure angles on the drive side. For asymmetric teeth, increasing the addendum leads to a significant decrease in the dynamic factor. The static transmission error, at the center of the single tooth contact zone, decreases with increasing pressure angle. The first two harmonics slightly increase with increasing pressure angle. It is further shown that the amplitudes of harmonics of the static transmission errors are significantly reduced when asymmetric teeth with long addendum providing high gear contact ratio close to 2.0 are used. (C) 2008 Elsevier Ltd. All rights reserved.