RAPID PROTOTYPING JOURNAL, cilt.31, sa.7, ss.1473-1488, 2025 (SCI-Expanded)
Purpose - This study aims to explore the potential of three-dimensional (3D) printing technology to enhance geogrid production, focusing on the influence of filament type on tensile performance. Geogrids, which reinforced soils by forming interlocking mechanisms with soil grains, were manufactured using polypropylene (PP) and polyethylene terephthalate glycol-modified (PET-G) filaments. The printability of these materials, along with thermoplastic polyurethane (TPU) and high-density polyethylene (HDPE), was initially assessed, revealing challenges with TPU and HDPE. Design/methodology/approach - Tensile tests, conducted on both single-rib and multirib samples, compared the mechanical performance of the 3D-printed geogrids against a factory-made PP geogrid. Findings - The results indicated that while the factory-made geogrid demonstrated superior tensile strength and ductility, 3D-printed geogrids, particularly those made with PP, exhibited promising tensile characteristics that could be suitable for specific applications. However, 3D-printed PET-G geogrids showed higher tensile strength but were more brittle. The findings suggest that although 3D printing offers a viable method for geogrid production, further optimization is required to achieve performance levels comparable to traditional manufacturing methods. Originality/value - While existing research on 3D-printed geogrids exists, studies comparing them with their factory-produced counterparts are currently limited. This research provides a unique comparison of the tensile modulus, elongation and tensile strength of factory-made geogrids and 3D-printed geogrids produced with different filaments.