On generalization of midpoint type inequalities with generalized fractional integral operators


Budak H., Usta F., SARIKAYA M. Z. , Ozdemir M. E.

REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, vol.113, no.2, pp.769-790, 2019 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 113 Issue: 2
  • Publication Date: 2019
  • Doi Number: 10.1007/s13398-018-0514-z
  • Title of Journal : REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS
  • Page Numbers: pp.769-790

Abstract

The Hermite-Hadamard inequality is the first principal result for convex functions defined on a interval of real numbers with a natural geometrical interpretation and a loose number of applications for particular inequalities. In this paper we proposed the Hermite-Hadamard and midpoint type inequalities for functions whose first and second derivatives in absolute value are s-convex through the instrument of generalized fractional integral operator and a considerable amount of results for special means which can naturally be deduced.