Matematicki Vesnik, cilt.76, sa.4, ss.288-302, 2024 (ESCI)
In this paper, we derive some nonlinear differential equations from generating function of generalized harmonic numbers and give some identities involving generalized harmonic numbers and special numbers by using these differential equations. For example, for any positive integers N, n, r, α and any integer m ≥ 2, S1(n + N, r + 1) n! = n∑ n∑ i∑ j=0 i=0 l=0 z=0 k=0 ()(l∑ r∑ (−1)l−z−i m l − z × S1(N, r − k + 1)S1 (n − i, k) H(z, j − 1, α) where S1 (n, k) is Stirling number of the first kind. i − l + m − 2 i − l) Nj αi j! (n − i)!.