Computer-aided prediction and cytotoxicity evaluation of dithiocarbamates of 9,10-anthracenedione as new anticancer agents


Stasevych M., Zvarych V., Lunin V., DENİZ N. G., GÖKMEN Z., Akgun O., ...Daha Fazla

SAR AND QSAR IN ENVIRONMENTAL RESEARCH, cilt.28, sa.5, ss.355-366, 2017 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 5
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1080/1062936x.2017.1323796
  • Dergi Adı: SAR AND QSAR IN ENVIRONMENTAL RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.355-366
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Anticancer activity as an associated action for a series of dithiocarbamates of 9,10-anthracenedione was predicted using the PASS computer program and analysed with PharmaExpert software. The predicted cytotoxic activity of the dithiocarbamate derivatives of 9,10-anthracenedione was evaluated in vitro on cancer cells of the human lung (A549), prostate (PC3), colon (HT29) and human breast (MCF7) using the sulforhodamine B (SRB) cell viability assay. Among these compounds, 9,10-dioxo-9,10-dihydroanthracen-1-yl pyrrolidin-1-carbodithioate and 9,10-dioxo-9,10-dihydroanthracen-2-yl pyrrolidin-1-carbodithioate were identified as the most potent anticancer agents with cytotoxic activity against the MCF-7 human breast cell line with GI(50) values of 1.40 M and 1.52 M, whereas the GI(50) value for the reference anticancer drug mitoxantrone was 3.93 M. Thus, anticancer activity predicted by PASS with a probability Pa > 30% was confirmed by the experiment. Relatively small Pa values estimated by PASS indicated the novelty of the considered derivatives comparing to the compounds from the PASS training set.