Facet Cooling in High-Power InGaAs/AlGaAs Lasers


Arslan S., Gundogdu S., Demir A., AYDINLI A.

IEEE PHOTONICS TECHNOLOGY LETTERS, vol.31, no.1, pp.94-97, 2019 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 31 Issue: 1
  • Publication Date: 2019
  • Doi Number: 10.1109/lpt.2018.2884465
  • Journal Name: IEEE PHOTONICS TECHNOLOGY LETTERS
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.94-97

Abstract

Several factors limit the reliable output power of a semiconductor laser under CW operation, such as carrier leakage, thermal effects, and catastrophic optical mirror damage (COMD). Ever higher operating powers may be possible if the COMD can be avoided. Despite exotic facet engineering and progress in non-absorbing mirrors, the temperature rise at the facets puts a strain on the long-term reliability of these diodes. Although thermoelectrically isolating the heat source away from the facets with non-injected windows helps lower the facet temperature, data suggests the farther the heat source is from the facets, the lower the temperature. In this letter, we show that longer non-injected sections lead to cooler windows and biasing this section to transparency eliminates the optical loss. We report on the facet temperature reduction that reaches below the bulk temperature in high power InGaAs/AlGaAs lasers under QCW operation with electrically isolated and biased windows. Acting as transparent optical interconnects, biased sections connect the active cavity to the facets. This approach can be applied to a wide range of semiconductor lasers to improve device reliability as well as enabling the monolithic integration of lasers in photonic integrated circuits.