Closed-Form Solutions for Gradient Elastic Beams with Geometric Discontinuities by Laplace Transform


Yayli M. Ö.

MATHEMATICAL PROBLEMS IN ENGINEERING, cilt.2013, 2013 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2013
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1155/2013/129872
  • Dergi Adı: MATHEMATICAL PROBLEMS IN ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Bursa Uludağ Üniversitesi Adresli: Hayır

Özet

The static bending solution of a gradient elastic beam with external discontinuities is presented by Laplace transform. Its utility lies in the ability to switch differential equations to algebraic forms that are more easily solved. A Laplace transformation is applied to the governing equation which is then solved for the static deflection of the microbeam. The exact static response of the gradient elastic beam with external discontinuities is obtained by applying known initial conditions when the others are derived from boundary conditions. The results are given in a series of figures and compared with their classical counterparts. The main contribution of this paper is to provide a closed-form solution for the static deflection of microbeams under geometric discontinuities.