DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, cilt.30, sa.6, ss.665-693, 2012 (SCI-Expanded)
The paper is a complete study of paracontact metric manifolds for which the Reeb vector field of the underlying contact structure satisfies a nullity condition (the condition (1.2), for some real numbers (kappa) over bar and (mu) over bar). This class of pseudo-Riemannian manifolds, which includes para-Sasakian manifolds, was recently defined in Cappelletti Montano (2010) [13]. In this paper we show in fact that there is a kind of duality between those manifolds and contact metric (kappa, mu)-spaces. In particular, we prove that, under some natural assumption, any such paracontact metric manifold admits a compatible contact metric (kappa, mu)-structure (eventually Sasakian). Moreover, we prove that the nullity condition is invariant under D-homothetic deformations and determines the whole curvature tensor field completely. Finally non-trivial examples in any dimension are presented and the many differences with the contact metric case, due to the non-positive definiteness of the metric, are discussed. (C) 2012 Elsevier B.V. All rights reserved.