Environmental Monitoring and Assessment, vol.197, no.5, 2025 (SCI-Expanded)
The electrification of public transport is important for a sustainable future and directly serves the 11th goal of the SDGs, which is Sustainable Cities and Communities. Nowadays, transportation emissions are increasing day by day. Within the scope of this study, the energy consumption and global warming potential (GWP) analyses of three different types of vehicles (12-m electric, 12-m FCEV fuel cell, and 18-m electric) during their production and usage phases were compared, aiming to guide a sustainable future. For the usage phase of the product, life tests and literature studies were used, regression modelling was utilized for the manufacturing stages, and the SimaPro Ecoinvent module was used for GWP. Within the scope of the study, three different EV and HFC commercial vehicles coming out of the same production line were compared in terms of energy consumption, and while the 12-m electric vehicle had the lowest energy consumption (1.625 kWh/km), the 18-m electric vehicle had the highest energy consumption (2.250 kWh/km). Comparing the GWP potentials of the vehicles, 12-m EV (5.97*10−4 GWP), 12-m FCEV (1.31*10−3 GWP), and 18-m EV (2.57*10−3 GWP) were calculated for the manufacturing stage. In the use phase, the GWPs of the three vehicles were calculated to be approximately the same. Future studies can contribute to the carbon-neutral roadmaps of countries by calculating the carbon footprint and environmental impact analysis across all processes from cradle to grave.