Effects of separation space diameter on the performance of a novel reverse flow cyclone


Sakin A., KARAGÖZ İ., AVCI A.

SEPARATION SCIENCE AND TECHNOLOGY, vol.54, no.15, pp.2450-2460, 2019 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 54 Issue: 15
  • Publication Date: 2019
  • Doi Number: 10.1080/01496395.2018.1547314
  • Journal Name: SEPARATION SCIENCE AND TECHNOLOGY
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.2450-2460

Abstract

A numerical study was carried out to investigate the effect of separation space diameter on the performance of a novel reverse flow tangential inlet cyclone design by using the Eulerian-Lagrangian approach. The design of this cyclone is based on the idea of increasing vortex length and decreasing pressure drop compared with traditional cyclones. This novel cyclone differs from the traditional cyclones with separation space and vortex limiter instead of the conical part. A qualitative numerical study was performed to analyze the effect of separation space diameter on the cyclone performance at different flow rates by evaluating velocity profile, pressure drop, fractional and overall efficiencies. The results show that the collection efficiency of smaller particles increases while pressure drop decreases significantly with the increase in separation space diameter for D-1/D < 0.5.