Dünya çapında ve ülkemizde yürütülen çalışmalar, taşıtların yaşam döngüsü boyunca enerji verimliliği konusunu, sera gazı salınımındaki artış ve enerji kaynaklarındaki azalmaya bağlı olarak, hammadde aşamasından geri dönüştürülme süreçlerine kadar önemli bir öncelik haline getirmiştir. Özellikle uzun mesafeli yolculuklara hizmet eden toplu taşıma araçları için taşıt ağırlığını azaltmak, yakıt tasarrufunu önemli ölçüde artırmaktadır. Bu taşıtların prototip imalata geçmeden önce sonlu elemanlar analizleri ile doğrulama süreçlerinin gerçekleştirilmesi maliyet ve zaman avantajı sağlamaktadır. Literatürde yapılan çalışmalar incelendiğinde benzer toplu taşıma araçlarının sonlu elemanlar modeli kurularak farklı yöntemler ile incelenmiştir. Ancak sonlu elemanlar modelinin sadece gövde üzerinde oluşturulduğu modellerde gövde karkasına etkiyen kuvvetlerin tam anlamıyla temsil edilemediği görülmüştür. Tüm bunlarla beraber literatürde yapılan çalışmalar genel olarak ticari bir tasarımı içermemekte ve yerleşim planı ve teknik özelliklerin detaylı incelenmediği görülmektedir. Bu çalışmada M3 sınıfı bir elektrikli otobüsün çalışma koşullarındaki davranışlarını incelemek için otobüs gövdesi, akslar dahil olmak üzere tamamını içerecek şekilde modellendi ve hareket halinde en çok maruz kaldığı üç senaryo olan tam yükte 1G ivmelenme, yanal ivmelenme ve ani frenleme ve hızlanma senaryolarında yapısal analizler gerçekleştirildi. Yapılan analizler sonucunda gövde karkasında bazı tasarımsal değişikliklere gidilmiş ve araç ağırlığı azaltılmıştır. Yeni tasarım tekrar aynı sınır şartlarında analiz edilerek doğrulama çalışması gerçekleştirilmiştir. Yapılan tasarım değişiklikleri sonrasında gövde karkasında sol duvar bölgesinde 19,694 kg, sağ yan duvar bölgesinde 17,346 kg, tavan bölgesinde 72,43, şasi ve diğer bölgelerde ise 122,53 kg’lık bir kütle tasarrufu sağlanarak toplamda %7,41 oranında bir hafifletme sağlanmıştır.
Studies carried out worldwide and in our country have made the issue of energy efficiency throughout the life cycle of vehicles an important priority, from the raw material stage to the recycling processes, due to the increase in greenhouse gas emissions and the decrease in energy resources. Reducing vehicle weight significantly increases fuel economy, especially for public transportation vehicles that serve long-distance journeys. Carrying out verification processes with finite element analyzes of these vehicles before proceeding with prototype manufacturing provides cost and time advantages. When the studies in the literature are examined, finite element models of similar public transportation vehicles have been established and examined with different methods. However, it has been observed that the forces acting on the body frame cannot be fully represented in models where the finite element model is created only on the body. In addition to all this, the studies in the literature generally do not include a commercial design and it seems that the layout plan and technical features are not examined in detail. In this study, to examine the behavior of an M3 class electric bus under operating conditions, the bus was modeled including the entire body, including the axles, and structural analyzes were carried out in the three scenarios to which it is most exposed in motion: 1G acceleration at full load, lateral acceleration and sudden braking and acceleration scenarios. As a result of the analysis, some design changes were made to the body frame and the vehicle weight was reduced. The new design was analyzed again under the same boundary conditions and a verification study was carried out. After the design changes, a mass saving of 19.694 kg in the left wall region of the body frame, 17.346 kg in the right side wall region, 72.43 kg in the ceiling region, and 122.53 kg in the chassis and other regions was achieved, resulting in a weight reduction of 7.41%.