Analysis, design, and actual fabrication of a hybrid microstrip-SIW bandpass filter based on cascaded hardware integration at X-band


Creative Commons License

Guvenli K., YENİKAYA S., Secmen M.

Elektronika ir Elektrotechnika, vol.27, no.1, pp.23-28, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 27 Issue: 1
  • Publication Date: 2021
  • Doi Number: 10.5755/j02.eie.27479
  • Journal Name: Elektronika ir Elektrotechnika
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Central & Eastern European Academic Source (CEEAS), Communication Abstracts, Computer & Applied Sciences, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Page Numbers: pp.23-28
  • Keywords: Bandpass filter, Cascaded integration, Substrate integrated waveguide, Microstrip, WAVE-GUIDE
  • Bursa Uludag University Affiliated: Yes

Abstract

© 2021 Kauno Technologijos Universitetas. All rights reserved.In this paper, the Microstrip-Substrate Integrated Waveguide (M-SIW) bandpass filter is designed, simulated, and fabricated based on the theoretical analysis. The Substrate Integrated Waveguide (SIW) highpass filter and the microstrip lowpass filter are combined in a hybrid design to achieve the M-SIW bandpass filter in the X-band. This design is more comprehensible and easier to achieve a bandpass filter at a desired frequency. The SIW highpass filter and the microstrip lowpass filter are connected in series to achieve the bandpass filter. To the measured results of the fabricated M-SIW bandpass filter, the center frequency is 10.20 GHz and the bandwidth is 2.40 GHz. When the analytical and measurement results are compared, the frequency change in the cut-off frequency is 6.02 % and the frequency change in the bandwidth is 8.74 %. It is generally seen that analytical, simulation, and measurement results are compatible with each other. The M-SIW bandpass filter can be broadly used in radar, Worldwide Interoperability for Microwave Access (WiMAX), and satellite technologies. The filters are simulated in Computer Simulation Technology (CST) Studio Suite.