Multi-objective optimization of truss structures using the enhanced Lichtenberg algorithm


Panagant N., Mahajan S., Sait S. M., YILDIZ B. S., YILDIZ A. R., Khodadadi N., ...Daha Fazla

MATERIALS TESTING, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1515/mt-2024-0190
  • Dergi Adı: MATERIALS TESTING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

The primary objective of numerous optimization problems is to enhance a single metric whose lowest or highest value accurately reflects the response quality of a system. However, in some instances, relying solely on one metric is not practical, leading to the consideration of multi-objective (MO) optimization problems that aim to improve multiple performance indicators simultaneously. This approach requires the use of a multi-objective optimization method adept at handling the intricacies of scenarios with various indices. Consequently, researchers have not explored multi-objective truss optimization as extensively as single-objective (SO) scenarios. The novel multi-objective Lichtenberg algorithm with two archives (MOLA-2arc) has been developed to address this. The efficacy of MOLA-2arc is evaluated against eight other MO algorithms, including the multi-objective bat algorithm (MOBA), multi-objective crystal structure algorithm (MOCRY), multi-objective cuckoo search (MOCS), multi-objective firefly algorithm (MOFA), multi-objective flower pollination algorithm (MOFPA), multi-objective harmony search (MOHS), multi-objective jellyfish search (MOJS) algorithm, and the original multi-objective Lichtenberg algorithm (MOLA). The challenge is to minimize structural mass and compliance while adhering to stress limitations. The outcomes demonstrate that MOLA-2arc shows notable improvements over its predecessor, MOLA, and surpasses all other competing algorithms in this study.