Physicochemical Parameters of Cu(II) Ions Adsorption from Aqueous Solution by Magnetic-Poly(divinylbenzene-n-vinylimidazole) Microbeads


KARA A., Demirbel E.

SEPARATION SCIENCE AND TECHNOLOGY, cilt.47, sa.5, ss.709-722, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 47 Sayı: 5
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1080/01496395.2011.626011
  • Dergi Adı: SEPARATION SCIENCE AND TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.709-722
  • Anahtar Kelimeler: adsorption isotherm, adsorption kinetic, adsorption thermodynamic, Cu(II) ions, magnetic polymers, CROSS-LINKED CHITOSAN, COPPER(II) IONS, METAL-IONS, REMOVAL, EQUILIBRIUM, BEADS, KINETICS, PB(II), BIOSENSORS, ISOTHERM
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

This study is aimed at the synthesis and characterization of the mesoporous magnetic-poly(divinylbenzene-1-vinylimidazole)[m-poly(DVB-VIM))microbeads(average diameter = 53-212 mu m); their application as adsorbent in the removal of Cu(II) ions from aqueous solutions was investigated. The mesoporous m-poly(DVB-VIM) microbeads were prepared by copolymerizing of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The mesoporous m-poly(DVB-VIM) microbeads were characterized by N-2 adsorption/desorption isotherms, ESR, elemental analysis, scanning electron microscope (SEM), and swelling studies. At fixed solid/solution ratio the various factors affecting adsorption of Cu(II) ions from aqueous solutions such as pH, initial concentration, amount of mesoporousm-poly(DVB-VIM)) microbeads, contact time, and temperature were analyzed. Langmuir, Freundlich, and Dubinin-Radushkvich isotherms were used the model adsorption equilibrium data. The Langmuir isotherm model was the most adequate. The pseudo first-order, pseudo-second-order, Ritch-second-order, and intraparticle diffusion models were used to describe the adsorption kinetics. The experimental data fitted to pseudo second-order kinetic. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy changes. Morever, after the use in adsorption, the mesoporous m-poly(DVB-VIM) microbeads with paramagnetic property was separated via the applied magnetic force. These features make the mesoporous m-poly(DVB-VIM) microbeads a potential candidate for support of Cu(II) ions removal under magnetic field.