ChemistrySelect, cilt.10, sa.47, 2025 (SCI-Expanded, Scopus)
In this study, bioactive and biocompatible transdermal patches were fabricated through the lyophilization of a chitosan/carboxymethylcellulose/akermanite composite matrix. The influence of curcumin incorporation at 0.5%, 1%, and 2% on the physicochemical, morphological, and biological properties of the patches was systematically investigated. Scanning electron microscopy revealed an interconnected porous structure with pore sizes ranging from 29 to 57 µm, facilitating cell infiltration and nutrient transport. Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy confirmed the successful integration of akermanite and curcumin, along with characteristic interactions within the polymeric network. In vitro release studies demonstrated a biphasic profile consisting of an initial burst followed by a sustained release phase, with the CCMAKCur0.5 sample achieving the highest cumulative release (94.28%). Antioxidant performance, evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method, ranged from 21.55% (CCM) to 38.96% (CCMAKCur0.5), while higher curcumin concentrations reduced activity due to increased matrix densification. Simulated body fluid immersion confirmed apatite formation, particularly in CCMAKCur0.5 and CCMAKCur2, indicating enhanced bioactivity. Cytocompatibility studies with HUVECs showed no toxic effects, and scratch assays demonstrated that CCMAKCur0.5 most effectively promoted wound closure. Overall, the findings indicate that curcumin- and akermanite-loaded lyophilized patches represent promising candidates for transdermal therapeutic applications.