Sharp Estimates of Hermitian Toeplitz Determinants for Some Subclasses of Sakaguchi Type Function Related to Sine Function


Vijayalakshmi S. P., YALÇIN TOKGÖZ S., Sudharsan T. V.

Sahand Communications in Mathematical Analysis, cilt.22, sa.1, ss.175-191, 2025 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.22130/scma.2024.2030027.1737
  • Dergi Adı: Sahand Communications in Mathematical Analysis
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.175-191
  • Anahtar Kelimeler: Hermitian Toeplitz, Sakaguchi functions, Sine function, Starlike functions
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Hermitian Toeplitz determinants are utilized across various fields, such as functional analysis, applied mathematics, physics, and technical sciences. This paper establishes a link with specific subclasses of analytic functions. Extensive research exists regarding estimating second and third Hankel determinants for normalized analytic functions within this domain. The current research seeks to establish precise upper and lower bounds for the second and third-order Hermitian Toeplitz determinants associated with specific novel subclasses of Sakaguchi-type functions, Ss∗(sin z), Sc∗(sin z) and Spq(sin z) related to the sine function. Further, the sharp estimates of Zalcman functional |an+m−1 − anam| for n = 2 and n = 2, m = 3 are considered.