Optimal design of structural engineering components using artificial neural network-assisted crayfish algorithm


Sait S. M., Mehta P., YILDIZ A. R., YILDIZ B. S.

MATERIALS TESTING, cilt.66, sa.9, ss.1439-1448, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 66 Sayı: 9
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1515/mt-2024-0075
  • Dergi Adı: MATERIALS TESTING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex
  • Sayfa Sayıları: ss.1439-1448
  • Anahtar Kelimeler: artificial neural network, automobile component, crayfish algorithm, mechanical design problems, optimization
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

Optimization techniques play a pivotal role in enhancing the performance of engineering components across various real-world applications. Traditional optimization methods are often augmented with exploitation-boosting techniques due to their inherent limitations. Recently, nature-inspired algorithms, known as metaheuristics (MHs), have emerged as efficient tools for solving complex optimization problems. However, these algorithms face challenges such as imbalance between exploration and exploitation phases, slow convergence, and local optima. Modifications incorporating oppositional techniques, hybridization, chaotic maps, and levy flights have been introduced to address these issues. This article explores the application of the recently developed crayfish optimization algorithm (COA), assisted by artificial neural networks (ANN), for engineering design optimization. The COA, inspired by crayfish foraging and migration behaviors, incorporates temperature-dependent strategies to balance exploration and exploitation phases. Additionally, ANN augmentation enhances the algorithm's performance and accuracy. The COA method optimizes various engineering components, including cantilever beams, hydrostatic thrust bearings, three-bar trusses, diaphragm springs, and vehicle suspension systems. Results demonstrate the effectiveness of the COA in achieving superior optimization solutions compared to other algorithms, emphasizing its potential for diverse engineering applications.