APPLIED SCIENCES-BASEL, cilt.15, sa.15, 2025 (SCI-Expanded, Scopus)
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5-20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of 28 kHz, operated at a fixed excitation frequency of 28 kHz. Thermal data were captured using an infrared camera. To enhance defect visibility and suppress background noise, the raw thermal sequences were processed using principal component analysis (PCA) and robust principal component analysis (RPCA). In LVT, RPCA and PCA provided comparable signal-to-noise ratios (SNR), with no consistent advantage for either method across all cases. In contrast, for pulsed thermography (PT) data, RPCA consistently resulted in higher SNR values, except for one sample. The LVT results were further validated by comparison with PT and phased array ultrasonic testing (PAUT) data to confirm the location and shape of detected damage. These findings demonstrate that LVT, when combined with PCA or RPCA, offers a reliable method for identifying BVID and can support safer, more efficient structural health monitoring of composite materials.