Electrical characterization of deformation behavior of carbon-based conductive filled nanocomposites under constant amplitude fatigue loading

Kasim H., Yazıcı M.

JOURNAL OF COMPOSITE MATERIALS, vol.55, no.26, pp.3861-3879, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 55 Issue: 26
  • Publication Date: 2021
  • Doi Number: 10.1177/00219983211031635
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Chimica, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Page Numbers: pp.3861-3879
  • Keywords: Strain Sensing, fatigue behaviour, conductive nanocomposites, carbon-based fillers, elastomers, NATURAL-RUBBER COMPOSITES, BUTADIENE RUBBER, STYRENE-BUTADIENE, MECHANICAL-PROPERTIES, NANOTUBES, NETWORK, STRAIN, BLACK
  • Bursa Uludag University Affiliated: Yes


Elastomer-based nanocomposites(EcNs) were prepared with a novel mixing method to determine the deformation properties under constant amplitude dynamic operating conditions. The fillers of EcNs consists of functionalized(M-FCNTs) and nonfunctionalized carbon-nanotubes(M-NCNTs), graphite(GF) and carbon black(CB). In this study, six different mixtures were prepared using M-FCNT, and M-NCNT fillers in 1, 2, 3 phr ratios, except for a CB-filled reference mixture(C00). Graphite, which has exfoliation and excellent lubricating properties1, was added to six mixtures at the rate of 1 phr to prevent agglomeration of M-CNTs in the mixtures. SEM images show that M-CNTs are homogeneously distributed, interacting strongly with GF, and M-FCNTs have a better interface interaction than M-NCNTs. During crosslinking of M-NCNT filled EcNs, due to the resistance in the direction of the polymer chain's movement, the difference between minimum torque and maximum torque increased by approximately 10% compared to M-FCNTs. The lost energy (Delta W) between the loading and unloading curves of M-NCNT filled EcNs increased compared to the M-FCNT filled mixtures and C00. The resistance properties depending on the samples' strain value showed a more stable and repetitive behavior in M-FCNT filled EcNs with a ratio of 1 and 2 phr, called F-C01 and F-C02, respectively. The semiconductor F-C01 sample showed the most stable behavior due to preserving the conductive filler network's structural order during the fatigue test, although the average resistance change was highest with 1.51E + 07 omega. We discuss ways to use conductive elastomer composites as an effective deformation detection sensor in dynamic applications based on the results.