Comparison of the targeted metabolomics and nutritional quality indices of the probiotic cheese enriched with microalgae


YILMAZ ERSAN L., Suna G.

Talanta, cilt.272, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 272
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.talanta.2024.125801
  • Dergi Adı: Talanta
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, L'Année philologique, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Food Science & Technology Abstracts, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Chemometric, Microalgae, Nutritional indices, Probiotic cheese, Targeted metabolomic
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

The objective of this study is to evaluate the influence of mixed L. acidophilus LA-5 and enrichment with microalgae (C. vulgaris and A. platensis) on metabolomic formation in a brined cheese matrix. Microbiological, compositional, and metabolomic characterization were investigated during the ripening. It was found that the nutritional quality indices of the samples were based on amino acid and fatty acid characterization. Fifty-six metabolomics including fatty acids, amino acids, organic acids, minerals, and vitamins were detected using the HPLC-DAD, GC-MS, and ICP-OES-based methods. The results indicated that the enrichment with probiotic strain and microalgae led to an increase in the nutritional quality indices such as EAAI, NI, BV, MUFA/SFA, h/H, and DFA. The chemometric analysis (e.g. HCA and PCA) presented the variance between the cheese samples based on their attributes. The identification of cheese metabolomics throughout the ripening could be used for a better understanding of the functional ingredients-cheese matrix relationships and as a directive approach for novel dairy products in other metabolomic-related studies.