Classification of Phosphorus Magnetic Resonance Spectroscopic Imaging of Brain Tumors Using Support Vector Machine and Logistic Regression at 3T


Er F. C., Hatay G. H., Okeer E., Yildirim M., HAKYEMEZ B., Ozturk-Isik E.

36th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Illinois, Amerika Birleşik Devletleri, 26 - 30 Ağustos 2014, ss.2392-2395 identifier identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası:
  • Doi Numarası: 10.1109/embc.2014.6944103
  • Basıldığı Şehir: Illinois
  • Basıldığı Ülke: Amerika Birleşik Devletleri
  • Sayfa Sayıları: ss.2392-2395
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

This study aims classification of phosphorus magnetic resonance spectroscopic imaging (P-31-MRSI) data of human brain tumors using machine-learning algorithms. The metabolite peak intensities and ratios were estimated for brain tumor and healthy P-31 MR spectra acquired at 3T. The spectra were classified based on metabolite characteristics using logistic regression and support vector machine. This study showed that machine learning could be successfully applied for classification of P-31-MR spectra of brain tumors. Future studies will measure the performance of classification algorithms for P-31-MRSI of brain tumors in a larger patient cohort.