A method for capturing dynamic spectral coupling in resting fMRI reveals domain-specific patterns in schizophrenia


Alacam D., Miller R., Agcaoglu O., Preda A., Ford J., Calhoun V.

FRONTIERS IN NEUROSCIENCE, vol.17, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 17
  • Publication Date: 2023
  • Doi Number: 10.3389/fnins.2023.1078995
  • Journal Name: FRONTIERS IN NEUROSCIENCE
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, EMBASE, Directory of Open Access Journals
  • Keywords: resting state-fMRI, dynamic spectral coupling, schizophrenia, visual network, FBIRN, FUNCTIONAL CONNECTIVITY REVEALS, BRAIN NETWORKS, TIME
  • Bursa Uludag University Affiliated: Yes

Abstract

Introduction Resting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool for assessing functional brain connectivity. Recent studies have focused on shorter-term connectivity and dynamics in the resting state. However, most of the prior work evaluates changes in time-series correlations. In this study, we propose a framework that focuses on time-resolved spectral coupling (assessed via the correlation between power spectra of the windowed time courses) among different brain circuits determined via independent component analysis (ICA).Methods Motivated by earlier work suggesting significant spectral differences in people with schizophrenia, we developed an approach to evaluate time-resolved spectral coupling (trSC). To do this, we first calculated the correlation between the power spectra of windowed time-courses pairs of brain components. Then, we subgrouped each correlation map into four subgroups based on the connectivity strength utilizing quartiles and clustering techniques. Lastly, we examined clinical group differences by regression analysis for each averaged count and average cluster size matrices in each quartile. We evaluated the method by applying it to resting-state data collected from 151 (114 males, 37 females) people with schizophrenia (SZ) and 163 (117 males, 46 females) healthy controls (HC).Results Our proposed approach enables us to observe the change of connectivity strength within each quartile for different subgroups. People with schizophrenia showed highly modularized and significant differences in multiple network domains, whereas males and females showed less modular differences. Both cell count and average cluster size analysis for subgroups indicate a higher connectivity rate in the fourth quartile for the visual network in the control group. This indicates increased trSC in visual networks in the controls. In other words, this shows that the visual networks in people with schizophrenia have less mutually consistent spectra. It is also the case that the visual networks are less spectrally correlated on short timescales with networks of all other functional domains.Conclusions The results of this study reveal significant differences in the degree to which spectral power profiles are coupled over time. Importantly, there are significant but distinct differences both between males and females and between people with schizophrenia and controls. We observed a more significant coupling rate in the visual network for the healthy controls and males in the upper quartile. Fluctuations over time are complex, and focusing on only time-resolved coupling among time-courses is likely to miss important information. Also, people with schizophrenia are known to have impairments in visual processing but the underlying reasons for the impairment are still unknown. Therefore, the trSC approach can be a useful tool to explore the reasons for the impairments.