Enhancing municipal solid waste management efficiency through clustering: A case study


Çіl S., KARAER F., SALİHOĞLU N. K., Tabansiz-Goc G., ÇAVDUR F.

Energy Sources, Part A: Recovery, Utilization and Environmental Effects, cilt.46, sa.1, ss.17304-17314, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/15567036.2024.2435540
  • Dergi Adı: Energy Sources, Part A: Recovery, Utilization and Environmental Effects
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, CAB Abstracts, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, Greenfile, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.17304-17314
  • Anahtar Kelimeler: Algorithm, clustering, municipal solid waste management, optimization, smart city, sustainability
  • Bursa Uludağ Üniversitesi Adresli: Evet

Özet

This study leverages real-time datasets generated through IoT technology and smart city applications to enhance solid waste management in Yalova Province, Turkey. By integrating these datasets with the municipality’s Geographic Information System (GIS) using the ITRF/96 3 UTM X Y Coordinate System, a dynamic waste collection framework was established. The K-Means clustering algorithm was employed to determine the optimal waste container placement, considering capacities of 550, 800, 1,000, and 3,000 liters and walking distances of 50–100 ms. Results indicated that 1,000 and 3,000-liter containers with a 100-m walking distance maximized collection efficiency. Replacing 484 traditional containers with 105 units of 3,000 liters reduced total routes by 34%, transport costs by 42.2%, and CO2 emissions by 33.5%. The study underscores the importance of integrating GIS and IoT technologies for real-time waste management, aligning with the UN’s Sustainable Development Goals (SDG 11 and SDG 13). By combining data-driven decision-making with urban sustainability practices, it offers a replicable model for municipalities seeking to reduce costs and environmental impacts in waste collection.