Sakaguchi type function defined by (p,q)-Derivative operator using Gegenbauer polynomials


Baskaran S., Saravanan G., Yalçın Tokgöz S., Vanithakumari B.

International Journal of Nonlinear Analysis and Applications, vol.13, no.2, pp.2197-2204, 2022 (ESCI) identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 2
  • Publication Date: 2022
  • Doi Number: 10.22075/ijnaa.2022.25973.3206
  • Journal Name: International Journal of Nonlinear Analysis and Applications
  • Journal Indexes: Emerging Sources Citation Index (ESCI), MathSciNet, zbMATH
  • Page Numbers: pp.2197-2204
  • Keywords: Analytic function, Bi-Univalent function, (p-q)- Derivative operator, Sakaguchi type function, Gegenbauer polynomials, BI-UNIVALENT FUNCTIONS, COEFFICIENT, SUBCLASS
  • Bursa Uludag University Affiliated: Yes

Abstract

An introduction of a new subclass of bi-univalent functions involving Sakaguchi type functions defined by (p, q)-Derivative operators using Gegenbauer polynomials have been obtained. Further, the bounds for initial coefficients vertical bar a(2)vertical bar, vertical bar a(3)vertical bar and Fekete Szego inequality have been estimated.